ECED 3300
 Tutorial 8

 Problem 1

 Problem 1}

The loop shown in the figure below consists of radial lines and segments of circles whose centers are located at point P.

Determine the magnetic field \mathbf{H} at P in terms of a, b, θ, and I.

Solution

We use the Bio-Savart law; for a current element the law implies that

$$
d \mathbf{H}=\frac{I d \mathbf{l} \times \mathbf{R}}{4 \pi R^{3}} .
$$

The loop consists of radial and semi-circular segments. As the problem is two-dimensional and has a clear-cut polar symmetry, we choose the polar coordinate system with the origin at P. Along the radial segments, $\phi=0$ and $\phi=\theta, \mathbf{R}=\rho \mathbf{a}_{\rho}$ and $I d \mathbf{l}=I d \rho \mathbf{a}_{\rho}$ such that $I d \mathbf{l} \times \mathbf{R}=0$. Thus there is no contribution to H at P due to radial segments. We now treat each circular segment separately.
(i) $r=a: I d \mathbf{l}=-I a d \phi \mathbf{a}_{\phi}$; the minus sign enters because the current direction is counterclockwise along this segment. Next, $\mathbf{R}=a \mathbf{a}_{\rho}$; putting together,

$$
d \mathbf{H}_{1}=-\frac{I a^{2} d \phi\left(\mathbf{a}_{\phi} \times \mathbf{a}_{\rho}\right)}{4 \pi a^{3}}
$$

It then follows that

$$
\mathbf{H}_{1}=-\frac{I}{4 \pi a} \int_{0}^{\theta} d \phi \underbrace{\left(\mathbf{a}_{\phi} \times \mathbf{a}_{\rho}\right)}_{=-\mathbf{a}_{z}}=\frac{I \theta}{4 \pi a} \mathbf{a}_{z} .
$$

(ii) $\mathrm{On} r=b: I d \mathbf{l}=I b d \phi \mathbf{a}_{\phi}$ and $\mathbf{R}=b \mathbf{a}_{\rho}$, and by the same token as above,

$$
\mathbf{H}_{2}=-\frac{I \theta}{4 \pi b} \mathbf{a}_{z}
$$

The overall field at P is given by the superposition principle by

$$
\mathbf{H}=\mathbf{H}_{1}+\mathbf{H}_{2}=\frac{I \theta(b-a)}{4 \pi a b} \mathbf{a}_{z} .
$$

Problem 2

Given the magnetic field in a free space,

$$
\mathbf{H}=x y^{2} \mathbf{a}_{x}+x^{2} z \mathbf{a}_{y}-y^{2} z \mathbf{a}_{z}, A / m
$$

determine
(i) the current density at $P(2,-1,3)$;
(ii) the time rate of change of the electric charge at P.

Solution

(i) Using the Maxwell equation, $\mathbf{J}=\nabla \times \mathbf{H}$, we obtain

$$
\mathbf{J}=\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x y^{2} & x^{2} z & -y^{2} z
\end{array}\right|
$$

Working out the determinant, we obtain $\mathbf{J}=-\left(x^{2}+2 y z\right) \mathbf{a}_{x}+2 x(z-y) \mathbf{a}_{z}$. At the point P , we have, $\mathbf{J}=-\mathbf{a}_{x}+16 \mathbf{a}_{z}, \mathrm{~A} / \mathrm{m}^{2}$.
(ii) Using the continuity equation, $\partial_{t} \rho_{v}=-\nabla \cdot \mathbf{J}=-\partial_{x} J_{x}-\partial_{y} J_{y}-\partial_{z} J_{z}=2 x-2 x=0$.

Problem 3

A very long, straight conducting cylinder of radius R is placed along the z-axis. There is a nonuniform current distribution $\mathbf{J}(\rho)=J_{0}(\rho / R)^{2} \mathbf{a}_{z},\left(A / m^{2}\right)$, where J_{0} is a constant, across the interior of the cylinder. Determine the magnetic field \mathbf{H} inside and outside of the cylinder. You may neglect any edge effects.

Solutions

Consider separately the interior and exterior of the cylinder.
The region $0<\rho<R$. Applying Ampère's law,

$$
\oint \mathbf{H} \cdot d \mathbf{l}=\int \mathbf{J} \cdot d \mathbf{S},
$$

which in this case simplifies to

$$
\begin{equation*}
H 2 \pi \rho=\int\left(\frac{J_{0} \rho^{2}}{R^{2}} \mathbf{a}_{z}\right) \underbrace{\rho d \rho d \phi \mathbf{a}_{z}}_{d \mathbf{S}}=\frac{J_{0}}{R^{2}} \int_{0}^{2 \pi} d \phi \int_{0}^{\rho} \rho^{3} d \rho=\frac{\pi J_{0} \rho^{4}}{2 R^{2}} \tag{1}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\mathbf{H}=\frac{J_{0} \rho^{3}}{4 R^{2}} \mathbf{a}_{\phi} \tag{2}
\end{equation*}
$$

The region $\rho>R$. The solution proceeds in exactly the same fashion, except the integration over ρ goes from 0 to R as the total current through the interior of the cylinder contributes in this case. The result is

$$
\begin{equation*}
\mathbf{H}=\frac{J_{0} R^{2}}{4 \rho} \mathbf{a}_{\phi} \tag{3}
\end{equation*}
$$

